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(57) ABSTRACT 
An apparatus includes a processor and a memory connected 
to the processor. The memory stores instructions executed 
by the processor to perform a transformation on a detected 
signal that has penetrated an object of interest to form a 
sinogram. The sinogram is a sine-based representation of the 
detected signal. A feature of interest is identified in the 
sinogram. A tomogram corresponding to the detected signal 
is reconstructed. The instructions to reconstruct utilize the 
feature of interest to determine at least one attribute of the 
tomogram. 
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OPTIMIZATION METHODS FOR FEATURE 
DETECTION 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application claims priority to U.S. Provisional Patent 
Application Ser. No. 61/920,432, filed Dec. 23, 2013, the 
contents of which are incorporated herein by reference. 

FIELD OF THE INVENTION 

This invention relates generally to signal processing. 
More particularly, this invention relates to optimized meth 
ods for feature detection. 

BACKGROUND OF THE INVENTION 

Tomography refers to imaging by sectioning or sections 
using any kind of penetrating signal or wave. A device used 
in tomography is called a tomograph, while the image 
produced is a tomogram. In most cases tomography is based 
upon the mathematical procedure known as tomographic 
reconstruction. Initially developed between the 1960s and 
1970s, the Computed Tomographic (CT) scanner made 
exceptional contribution to medicine, which was the first 
application of the process. In recent years, tomography has 
spread to different applications. Some examples are Elec 
trical Tomography (using capacitance, resistance, or imped 
ance), Optical Tomography (using light) and Seismic 
Tomography (using seismic waves). 
A general tomographic system includes one or more 

Sources of the wave or signal used, and one or more 
detectors tuned to detect variations (for example of inten 
sity) of the same wave or signal. Scanning Sources and 
detectors around the object to image, by a relative move 
ment, or by using more of them, the signal or wave pen 
etrates at least part of the object to be imaged, and thus it is 
affected in a detectable way (for example, its intensity might 
decrease). The variations of the signals, along with geo 
metrical information (for example the positions of Source 
and detector), is the data that is fed to the tomographic 
reconstruction process to obtain an object image (tomo 
gram). 

Regardless of the specific wave or signal used, tomo 
graphic reconstruction is required to obtain the tomogram 
from the data gathered. When implemented as computer 
programs or processes, as is most often the case, tomo 
graphic reconstruction processes are expensive in terms of 
computational resources and memory. In general, the recon 
struction process complexity is at least proportional to the 
size of the input information (sinogram) and to the dimen 
sions of the tomogram. As used herein, sinogram refers to 
sine-based visual data derived from data collected at detec 
tors. The sinogram may be derived from a geometrical 
transformation of raw input data. To obtain accurate infor 
mation on the object, generally it would be desirable to 
increase both the size of the sinogram and the dimensions of 
the tomogram, thus increasing the computational and 
memory loads. Increased computational and memory loads 
are expensive. 

In some applications, the interest does not lie in the whole 
tomogram. Rather, one might be interested in only specific 
features, which are currently extracted in a Successive fea 
ture detection process performed on the tomogram. The cost 
of this further operation is at least proportional to the 
dimension of the tomogram. Features of interest may be, for 
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2 
example, particular shapes or intensity profiles on the tomo 
gram. In view of the foregoing, it would be desirable to 
develop optimized methods for feature detection. 

SUMMARY OF THE INVENTION 

An apparatus includes a processor and a memory con 
nected to the processor. The memory stores instructions 
executed by the processor to perform a transformation on a 
detected signal that has penetrated an object of interest to 
form a sinogram. The Sinogram is a sine-based representa 
tion of the detected signal. A feature of interest is identified 
in the sinogram. A tomogram corresponding to the detected 
signal is reconstructed. The instructions to reconstruct uti 
lize the feature of interest to determine at least one attribute 
of the tomogram. 

BRIEF DESCRIPTION OF THE FIGURES 

The invention is more fully appreciated in connection 
with the following detailed description taken in conjunction 
with the accompanying drawings, in which: 

FIG. 1A illustrates a tomogram with a feature of interest. 
FIG. 1B illustrates a tomogram with a barycenter in a 

feature of interest. 
FIG. 1C illustrates a tomogram with an array of points in 

a feature of interest. 
FIG. 1D illustrates a tomogram with an envelope around 

a feature of interest. 
FIG. 2A illustrates processing performed in accordance 

with an embodiment of the invention. 
FIG. 2B illustrates processing performed in accordance 

with another embodiment of the invention. 
FIG. 2C illustrates processing performed in accordance 

with still another embodiment of the invention. 
FIG. 3A illustrates a tomogram with a feature of interest 

having separate areas of interest. 
FIG. 3B illustrates a sinogram corresponding to the tomo 

gram of FIG. 3A. 
FIG. 4A illustrates a tassel on a tomogram. 
FIG. 4B illustrates the tassel of FIG. 4A in a sinogram. 
FIG. 4C illustrates another tassel on a tomogram. 
FIG. 4D illustrates the tassel of FIG. 4C in a sinogram. 
FIG. 5A illustrates a feature of interest in a tomogram. 
FIG. 5B illustrates the feature of FIG. 5A in a sinogram. 
FIG. 6A illustrates a feature of interest. 
FIG. 6B illustrates a shifted feature of interest. 
FIG. 6C illustrates the difference in position between FIG. 

6A and FIG. 6B. 
FIG. 6D illustrates a sinogram corresponding to the 

feature of FIG. 6A. 
FIG. 6E illustrates a sinogram corresponding to the fea 

ture of FIG. 6B. 
FIG. 6F illustrates feature shift in a sinogram. 
FIG. 7 illustrates a machine configured in accordance 

with an embodiment of the invention. 
Like reference numerals refer to corresponding parts 

throughout the several views of the drawings. 

DETAILED DESCRIPTION OF THE 
INVENTION 

FIG. 1A shows an example of rectangular feature of 
interest 10 on the tomogram 20. Features of interest may be 
reported in different ways. For example, in FIG. 1B we 
represent the coordinates of the barycentre 12 of the feature 
of interest 10 of FIG. 1A. In FIG. 1C we show an array 14 
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of all the points in the feature of interest 10 of FIG. 1A. In 
FIG. 1D we show an envelope 16 of known shape drawn 
around the feature of interest 10 in FIG. 1A. 
The sinogram dimensions are usually smaller than the 

dimensions of the tomogram. In many practical cases, the 
tomogram is an image, often in high definition, So it may 
contain millions of data points. The number of Sources and 
the number of detectors used (or the numbers of their 
relative positions) give the dimensions of the sinogram; this 
may result in a few thousands to tens of thousands points. 

In this invention, we propose performing a feature detec 
tion step on the sinogram to identify the data related to the 
features of interest of the tomogram. This way, the feature 
detection step is performed on the Smaller data set, with an 
immediate decrease in computational cost. 
The results of this feature detection step can then be used 

to create the tomogram or a partial area of the tomogram, 
reconstructing the image only in specific portions of it 
eventually using only a Subset of the sinogram. Hence, the 
computational cost of the reconstruction step is reduced as 
well. In some cases, the results of the feature detection 
performed on the sinogram may be processed to extract only 
the information of interest, without performing the recon 
struction. 

FIG. 2A, FIG. 2B and FIG. 2C show flowcharts of some 
examples of elaboration and reconstruction processes. These 
processes all start with a data collection step 30, collecting 
values from the detectors and, usually, storing this data into 
arrays. Each array defines a profile of the values measured 
by the detectors and is associated with a boundary distribu 
tion of the detectors at every single source. When more 
sources are used, or a same source in more positions, the 
arrays are piled to create a raw input data matrix 32. 

From this raw input data matrix 32, we show three 
processes that can be used to obtain information on the 
features of interest. In the first pathway, shown in FIG. 2A, 
a transformation 34 is applied on the raw input data 32 to 
obtain a sinogram 36. This transformation accounts for the 
specific geometry of the Sources and detectors. A reconstruc 
tion algorithm 38 is applied to the sinogram 36 to obtain a 
tomogram 40. Application of a feature detection step 42 
allows extracting the feature of interest 44 on the tomogram. 

In the second pathway, shown in FIG. 2B, a transforma 
tion 34 is applied on the raw input data 32 to obtain a 
sinogram 36. This transformation accounts for the specific 
geometry of the Sources and detectors. A feature detection 
step 42 performed on the sinogram 36 extracts the feature of 
interest 35 on the sinogram. A reconstruction step 38 is then 
performed using the feature 35 to obtain a partial tomogram 
of the feature of interest 41. Compared to the first process 
path from FIG. 2A, in this case the size of the input data for 
both the feature detection step and the reconstruction step is 
much Smaller. 

Feature detection can be performed also directly on the 
raw input data, having no information of the geometry of the 
sources and the detectors. This is shown in FIG. 2C. A 
feature detection step 42 is performed on the raw input data 
32, extracting a feature of interest 33. A transformation 34 
that accounts for the specific geometry of the sources and 
detectors is then applied on the feature 33 to obtain a 
sinogram feature 35. A reconstruction step 38 is then per 
formed using the feature 35 to obtain a partial tomogram of 
the feature of interest 41. 

There are cases in which the information required to 
characterize a feature might be obtained from sinogram data 
without performing the reconstruction step. For example, if 
one obtained the feature of interest 35 on the sinogram, one 
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4 
could extract the coordinates of the barycentre 12 of the 
feature (see FIG. 1A) directly without reconstruction, with a 
reduction of computational cost. 

In general, the feature detection methods applied to the 
sinogram are conceptually the same as those available in the 
Scientific literature and applied, for example, in image 
analysis. There are a number of ways to achieve a feature 
detection step on a sinogram and they can be divided into 
two main classes: (1) feature detection methods that operate 
on all the data of the sinogram and (2) feature detection 
methods that operate on a partial set of the sinogram. 
As shown in FIG. 3A, this classification of feature detec 

tion methods derives from the possibility to topologically 
separate an area 50 of the tomogram 20 from another area 
52, and at the same time see a distinction on the sinogram 
54 (FIG. 3B) between an area 56 (corresponding to the area 
50 from the tomogram 20 in FIG. 3A) and an area 58 
(corresponding to the area 52 on the tomogram 20 in FIG. 
3A), such that an unequivocal correspondence is maintained 
Any number of feature detection methods may be used in 

accordance with embodiments of the invention. For 
example, feature detection methods that operate as filters, 
using kernel functions as a basic function to be convoluted 
with the sinogram data, along the rows or columns or both 
may be used. As a filtering procedure an ad-hoc transform 
operator can be identified that takes account of both the 
geometrical information of the distribution of the sources 
and detectors and the shape of the feature to be detected. 
This transform operator is applied on the sinogram to obtain 
a transformed sinogram on which another feature detection 
method can be applied like, thresholding, masking, blob 
detection and so on 

Feature detection methods that process the data of the 
sinogram that belong to a certain interval or are above/below 
a certain threshold may be used. Suppose that the data is 
represented as numbers, this approach entails determining 
which data points are larger (or Smaller) than a pre-set value 
or data points in a given range. This method has a compu 
tational cost that is proportional to the number of compari 
Sons considered. In the cases of interest, this would mean 
comparing the pre-set number to all values in either the 
tomogram or the sinogram. As was mentioned above, there 
is usually a difference of at least two orders of magnitude in 
the computational cost between the two cases 

Classical edge detection, point detection and blob detec 
tion methods may also be used. Feature detection methods 
that operate on partial set of data of the sinogram may also 
be used. These consist of algorithms that explore only a 
predetermined segment/area (not necessarily consecutive) of 
the sinogram. For example, the algorithms may be based on 
lookup tables where for each expected feature of interest on 
the tomogram there is an associated pattern on the sinogram 
that can be pre-calculated. The recognition works as a 
lookup table, comparing the Sinogram with the pre-set 
patterns. Different features in the tomogram correspond to 
different patterns in the sinogram. 

Exclusive-OR (XOR) feature detection algorithms may 
also be used. Instead of operating on every single value of 
the sinogram, the feature detection is performed in Succes 
sive steps. In each step a XOR operation compares the 
sinogram with predetermined patterns. In general, algo 
rithms that work on all of the data of the sinogram can also 
be applied to analyze a Subset of the sinogram data. 

Other methods of feature detection focus on the possibil 
ity to extract the local information of the tomogram through 
an a priori projection of the known feature from the tomo 
gram to the traditional sinogram. Some examples include 
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tomogram tessellation where the tomogram is tessellated in 
areas, i.e. regular or Voronoi, which are projected on the 
sinogram. It is then possible to know if a variation in 
intensity observed on the sinogram was involved in the 
corresponding areas. FIG. 4A shows a tassel 60 on the 
tomogram 20, while FIG. 4B shows the corresponding 
portion 62 of the sinogram 64. Similarly, FIG. 4C shows a 
different tassel 70 on the tomogram 20, while FIG. 4D shows 
the corresponding portion 72 of the sinogram 74. 
A preloaded feature may also be used by starting from 

expected features. Their projections on the sinogram are 
pre-calculated and can be used to search real sinogram data 
and extract feature information without requiring a formal 
reconstruction step. FIG. 5A shows an example of feature of 
interest 80 on a tomogram 20, and FIG. 5B shows its 
pre-calculated projected feature 82 on a sinogram 84. 
The feature detection methods described before can be 

considered static feature detection methods since they oper 
ate on a single sinogram. When the need is to detect a feature 
that is evolving in time on the tomogram (perhaps moving), 
then more Successive sinograms should be considered in the 
processing. This results in dynamic feature detection meth 
ods. These feature detection methods can be described by 
considering a variation in the information of the sinogram 
between two or more sinograms obtained at Successive 
instants in time. As an example of implementation consider 
a shift in space of the feature of interest 100 on the 
tomogram 20 of FIG. 6A to the feature of interest 110 on the 
tomogram 20 of FIG. 6B. The positive difference in position 
is the area 120 in FIG. 6C. Then the position shift can be 
identified from the positive difference of the feature 102 on 
sinogram 104 in FIG. 6D (corresponding to the feature 100 
from FIG. 6A) and the feature 112 on sinogram 114 in FIG. 
6E (corresponding to the feature 110 in FIG. 6B) resulting 
in the feature 112 on the sinogram 124 of FIG. 6F. 

Regions of interest may be defined by maximum varia 
tions. That is, the latest acquired sinogram is subtracted from 
a previous one and a differential pattern is detected as the 
maximum variation in the values of the resulting differen 
tiated sinogram. The region of maximum variation on the 
differentiated sinogram is associated with the dynamic evo 
lution of the feature on the tomogram. 

Swipe detection techniques may also be used. That is, 
after the application of the technique of maximum variation 
as described before, the detected feature can be processed to 
obtain some dynamic descriptor, like the main Velocity and 
movement direction and the expansion/contraction rate of 
the feature (technically the eigenvalues). Those can be used 
to predict in which areas of sinograms from Successive 
instants in time there will be a higher likelihood to find the 
features. 
As an alternative to the traditional sinogram representa 

tion as a matrix of Sources and detectors on which to operate 
the previously described feature detection algorithms, the 
sinogram can be stored and used for feature detection in a 
more general data format. 
One data format is tree listing. A tree can be constructed 

from a common root, representing a detector, a source or a 
couple source/detector can be another node. The choice of 
which nodes to append where can be guided by some 
topological rule, like neighborhood of the detectors or 
Sources, or according to Some pattern useful for the feature 
detection process 

Another data format is feature-defined listing. In this case, 
data of the sinogram are stored and processed according to 
a specific representation of data clusters that is Suited to 
identify a single feature or a family of features. As an 
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6 
example of feature-defined listing consider a listing through 
different analytical functions and their parameters. The 
different class of analytical functions, like polynomials, 
sinusoids, polylines and so on, are used to decompose the 
sinogram. The list contains the values of the parameters 
associated with the analytical function used to decompose 
the sinogram. A feature of interest on the sinogram corre 
sponds to a particular occurrence of the listed parameters. 
For example, Suppose that any sinogram feature may be 
represented as a composition of sinusoids, each defined by 
a set of parameters. Each level of the feature-defined listing 
would represent a number of sinusoids; by exploring the 
feature-defined listing it would be possible to obtain a series 
of sinusoids that taken together represent a feature. 
The alternative representations of the sinogram can 

become useful in practical implementations because they 
may allow a faster exploration of the data space they 
represent, improving on the computational cost of some 
algorithms. A further advantage of these kinds of represen 
tations is that they may allow a simple way to obtain features 
at different levels of detail or quality by exploring deeper or 
shallower levels of the representations. 

After the feature detection step, the features extracted 
from the sinogram can go through a post-processing step to 
gather detailed information. An example is oversampling of 
the regions of interest by increasing the sampling grid in the 
sinogram only around the detected feature through interpo 
lation techniques like polynomial or spline fitting. Another 
possibility is to initially acquire and process only a portion 
of the data to form the sinogram. After having identified a 
region of interest, a new acquisition of data is performed that 
includes more information related to the region of interest. 
Thus, a higher definition of the feature can be achieved 
which may be useful for segmentations of one or more 
features detected as well as to separate two narrow features. 
The partial reconstruction mechanism could include a 

recursive feature detection process. Each feature detected on 
the sinogram through running a first detection process is fed 
back to the feature detection process again until criteria on 
single or multiple optimization parameters are met. The 
optimization parameter could comprise the amount of 
entropy of a feature or another image statistical descriptor 
that specifies the quality of the detected feature. The param 
eters can be estimated at each recursive step. The stop 
criteria may consist for example in looking for the maximum 
or a minimum of a parameter, or for a given differential 
variation of the parameters between Successive recursion 
steps. In practical cases, the process in the feedback loop 
could include any previously described feature detection 
method that operates on all or partial sets of the sinogram. 
For example, assume one implements a feature detection 
method using a kernel function, parameters associated with 
the topology of the kernel function can be considered 
variables of the recursive process. By defining a priori an 
optimization parameter, running the loop until the feature 
detection quality criteria is met will define a convergence of 
the kernel function topology to the shape of the feature so 
that it completely suits the feature to be extracted. Alterna 
tively, the feature detection method used recursively may 
scale with each iteration to highlight finer details. Further 
more, it may be practical to use different feature detection 
methods in Successive recursions, the choice of which may 
be determined by the quality parameters. This may be 
particularly advantageous when one has the possibility to 
use methods optimized for different conditions. For 
example, a first method may be particularly Suited for coarse 
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detection on a large data-set, while a second method may be 
optimized for detecting fine details in the neighbourhood of 
given points. 
One of the advantages of using optimized processes for 

feature detection is that some of the computational resources 
“freed may be used to improve the quality of the output. For 
example, spatial features may be described using higher 
resolution than would be practical by reconstructing the 
whole tomogram. 

In many applications of tomography the computation 
requirements of the steps involved, in terms of memory and 
clock cycles, tend to not be critical, as often the results do 
not need to be produced in real-time. Moreover, the most 
common practical implementations use rather large equip 
ment, so there is no particular hurdle in building the system 
with large amounts of memory and computational power. 
Furthermore, many tomographic systems need to output the 
whole tomogram, rather than information on specific fea 
tures. However there are applications where memory may be 
limited, computational power may be limited, the results of 
the processing are needed in real time, or almost in real time, 
or the results needed are specific features rather than the 
whole tomogram. For example, in a medical imaging sys 
tem, there may be the need to track an object or probe. This 
requires real-time detection of its specific signature, regard 
less of what would be present in the rest of the tomogram. 
Further examples maybe found in some optical detection 
systems, for example some touch sensitive layers of a touch 
display. These systems generally need to report the positions 
of contacts, or some other contact characteristics, and the 
output needs to be available in real time, or at least with the 
minimum possible delay. On top of that, devices including 
touch sensitive layers may be limited in terms of the 
available computational resources available. 

These later examples are cases where optimizations can 
be important because they may allow faster detection and 
tracking of features of interest when compared to the pro 
cessing of the whole tomogram. This means a higher reso 
lution in time, and can allow a higher spatial resolution for 
the features. 

In Sum, one aspect of this disclosure is the use of the 
sinogram in feature detection rather than the tomogram. 
Another aspect of the disclosure is the reconstruction of only 
part of the tomogram based on results from feature detection 
on the sinogram. Another noteworthy aspect is the extraction 
of the relevant information directly on the output of the 
feature detection on the sinogram without any reconstruction 
process. The use of feature detection methods operative on 
the whole sinogram and the use of feature detection methods 
operative on a Subset of the sinogram are noteworthy. 
Pre-determined (pre-computed) sinogram feature templates 
may be compared with a sinogram to identify features. 
Dynamic features may be detected on sinogram data by 
using sinograms from different instants in time. Finally, 
recursive methods may be used to improve some quality 
parameters of detected features. 

FIG. 7 illustrates a machine 700 configured in accordance 
with an embodiment of the invention. The machine 700 
includes standard components, such as a central processing 
unit or processor 710 connected to input/output devices 712 
via a bus 714. The input/output devices may include ports 
for receiving signals from detectors collecting signals that 
have penetrated an object of interest. The input/output 
devices 712 may also include a keyboard, mouse, touch 
display and the like. A network interface circuit 716 is also 
connected to the bus 714 to provide connectivity to a 
network (not shown). A memory 720 is also connected to the 
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bus 714. The memory 720 stores instructions executed by 
the processor 710 to implement operations of the invention. 
In one embodiment, the instructions include a sinogram 
processing module 722. By way of example, the sinogram 
processing module 722 may implement operations 30-36 of 
FIG. 2A or operations 30-42 of FIG. 2B. The memory 720 
also stores a tomogram processing module 724. By way of 
example, the tomogram processing module 722 may imple 
ment operations 38-44 of FIG. 2A or operations 38-41 of 
FIG. 2B. 
An embodiment of the present invention relates to a 

computer storage product with a non-transitory computer 
readable storage medium having computer code thereon for 
performing various computer-implemented operations. The 
media and computer code may be those specially designed 
and constructed for the purposes of the present invention, or 
they may be of the kind well known and available to those 
having skill in the computer Software arts. Examples of 
computer-readable media include, but are not limited to: 
magnetic media, optical media, magneto-optical media and 
hardware devices that are specially configured to store and 
execute program code. Such as application-specific inte 
grated circuits (ASICs'), programmable logic devices 
(“PLDs) and ROM and RAM devices. Examples of com 
puter code include machine code, Such as produced by a 
compiler, and files containing higher-level code that are 
executed by a computer using an interpreter. For example, 
an embodiment of the invention may be implemented using 
JAVAR), C++, or other object-oriented programming lan 
guage and development tools. Another embodiment of the 
invention may be implemented in hardwired circuitry in 
place of, or in combination with, machine-executable soft 
ware instructions. 
The foregoing description, for purposes of explanation, 

used specific nomenclature to provide a thorough under 
standing of the invention. However, it will be apparent to 
one skilled in the art that specific details are not required in 
order to practice the invention. Thus, the foregoing descrip 
tions of specific embodiments of the invention are presented 
for purposes of illustration and description. They are not 
intended to be exhaustive or to limit the invention to the 
precise forms disclosed; obviously, many modifications and 
variations are possible in view of the above teachings. The 
embodiments were chosen and described in order to best 
explain the principles of the invention and its practical 
applications, they thereby enable others skilled in the art to 
best utilize the invention and various embodiments with 
various modifications as are Suited to the particular use 
contemplated. It is intended that the following claims and 
their equivalents define the scope of the invention. 

The invention claimed is: 
1. An apparatus, comprising: 
a processor; and 
a memory connected to the processor, the memory storing 

instructions executed by the processor to: 
perform a transformation on a detected signal that has 

penetrated an object of interest to form a sinogram, 
wherein the sinogram is a sine-based representation 
of the detected signal, 

identify a feature of interest in the sinogram, and 
reconstruct a tomogram corresponding to the detected 

signal, wherein the instructions to reconstruct utilize 
the feature of interest to determine at least one 
attribute of the tomogram, wherein the at least one 
attribute of the tomogram is limited to the feature of 
interest. 
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2. The apparatus of claim 1 wherein the instructions to 
identify include instructions to perform recursive process 
1ng. 

3. The apparatus of claim 1 wherein the instructions to 
identify include instructions to identify dynamic features 
from sinograms from different instances in time. 

4. An apparatus, comprising: 
a processor; and 
a memory connected to the processor, the memory storing 

instructions executed by the processor to: 
perform a transformation on a detected signal that has 

penetrated an object of interest to form a sinogram, 
wherein the sinogram is a sine-based representation 
of the detected signal, 

identify a feature of interest in the sinogram, and 
reconstruct a tomogram corresponding to the detected 

signal, wherein the instructions to reconstruct utilize 
the feature of interest to determine at least one 
attribute of the tomogram, wherein the at least one 
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attribute of the tomogram is a tomogram with a first 20 
resolution for the feature of interest and a second 
resolution for all remaining content, wherein the first 
resolution is higher than the second resolution. 

5. The apparatus of claim 4 wherein the instructions to 
identify include instructions to perform recursive process 
1ng. 
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6. The apparatus of claim 4 wherein the instructions to 

identify include instructions to identify dynamic features 
from sinograms from different instances in time. 

7. An apparatus, comprising: 
a processor; and 
a memory connected to the processor, the memory storing 

instructions executed by the processor to: 
perform a transformation on a detected signal that has 

penetrated an object of interest to form a sinogram, 
wherein the sinogram is a sine-based representation 
of the detected signal, 

identify a feature of interest in the sinogram, and 
reconstruct a tomogram corresponding to the detected 

signal, wherein the instructions to reconstruct utilize 
the feature of interest to determine at least one 
attribute of the tomogram, wherein the instructions 
to identify include instructions to identify from pre 
computed sinogram features. 

8. The apparatus of claim 7 wherein the instructions to 
identify include instructions to perform recursive process 
ing. 

9. The apparatus of claim 7 wherein the instructions to 
identify include instructions to identify dynamic features 
from sinograms from different instances in time. 
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